GCCI702B "MARIA" CHIP
(Acceptance Specification
(Atari Part \#C O24674-30 Drawing)

March 21, 1984

www.atari-history.com

GENERAL COMPUTER COMPANY CONFIDENTIAL
(Accepted By:

viI

Atari

TABLE OF CONTENTS

1. Scope.
2. Functionsl Description

- Features
- Input/Dutput Sisnals
- Block Diasram

3. Module Operation

- Microprocessor Dperation
- DMA Dperation
- Line RAM Dferation
- Video Output

Test Sequences (USIM)
5. Electrical Specificatioris

- DC Levels
- AC Timins

6.

Absolute Maximum Specifications
1.0 Scope

This document is intended to be the acceptance specification to the GCCI702B 'Maria' video srafhics controller chif designed by General Computer Company. It describes all important functional, timins, and parametric information peculiar to this device.

2.1 Features

The chip is a srafinics controller for interfacins NTSC display to a nicroprocessor (6502) video same system. It reflaces the functions of the conventions? lelevision interface adafter "TIA" when enabled by a new cartridseg and allows a conventional TIA chif to function normally when a 2600 VCS cartridse is usede. The followins functions are supported:

* Clock losic which runs the microfrocessor at 1.79 MHz when Maria is enabled, and 1.19 MHz when TIA is enabled. An off-chip 14.3 MHz crystal oscillator provides the master system timins sisnals. This sisnal is immediately divided by two to provide the internal clock at a 50\% duty cycle.
* Chip select losic for controllins two 2k static FAM chifs (150 nsec maximum access), a 6532 chip, and the TIA chir.
* Horizontal arid vertical timins losic which serierates BLANK, SYNC, and color burst sishals without frocessor intervention. In additiony a WSYNC operation allows the processor to syric to the next scanline by nesstins the READY line.
* A $25 \times$ 8-bit memory for writins color data (four bits of chrominance and four bits of luminance). This memory is write-oniy to the microprocessor, but may be read by a tester. It may be written durins on-screen time with no dramatic color slitches, althoush a siven fixel may be extended as a result.
* Color and luminance circuits. with Eri-state luminance outputs to facilitate external selection of Maria or TIA outpists, deferidins on which chip is enabled.
* Video seneration circuitry consistins of two $160 \times$ 5-bit \quad line
 horizontal scan line, Durins each scanline, one buffer is loaded by the dma controller and the other is synchronously read out throush the color and luminance circuits. The lirie ram has the followins features:

1. Two or rour of the s-bit pixel cells may be written in one operation, on any pixel boundary within the memory.
2. There is a transparency function applied to writins any pixel, such that if the least sisnificant 2 bits of the data to be written are 00, that pixel is not writtern. This feature may be disabled by a control resister bit (KM).
3. There is a Burst Clear function for the line ram, which cari clear either of the two line buffers to zeroes in one operation.
4. The output steerins losic for the line ram allows a siven 5-bit cell to be interpreted in ans of three major ways:
5. 160-mode: one cell, one pikel on the screen.
6. 320×1 mode: one cell, two pixels on the screer, halpwidth. The least sisnificant two oits are used alternately.
7. 320×2 mode: one cell, two pixels, half-width. The least sisnificant four bits are steered alternately to be tine least sisnificant 2 bits of the color ram address, with 0's padded.

There are variations on these modes allowins combinations of 320×1 and 320×2 resolutions on a single scanline at once.

* DMA (Direct Memory Access) circuitry which, orice started, halts the microprocessor and loans object information into the line ram at prosramable horizontal positions.

1. Loadins is controlled by a display list of variable sized objects previously set up by the microprocessor prosram.
2. Display lists are controlled by Display List Lists, which cart also set certain modes of the chip on a vertical basis and provide Display List Interrupts to the microprocessor.
3. An indirect charscter map* modeg which uses a character base byte concatenated with bytes read from a map to form ari address for findins sraphics.
4. A 'holey DMA" mode, which infers zero sraphics data from the effective sraphics address senerated for an object, savins
 (by terminatins the object's DMA early).

* A Maria ENable line, which controls the memory map senerated by the chip select losic to be either the loose map of ari Atari 2600 system, or a larser memory system. In addition, the MEN line resets the sync counters to zero when nesated.

2.2 I/0 sisnals

Maria pin descrietion

Name pin $\#$	tupe function		
USE	i	PWR	Ground

INT- 20

XTALI 3
XTALO 40
MEN 5 I

PCLK2 6
I
TCLK 7

PCLKO 80
Interrupt reauest outpist, intended for $6502 \mathrm{NMI}-$
Slow. One MOS load.
Oscillator input 14.318080 MHz nominal

Oscillator outetut
Maria Enable input, When hish, maria oferates normally When low, video is shut off, chip is held in reset, and memory map is set for 2600-mode. 3-6K pulldown R.

6502 Phase 2 clock input. Used to synchronize with processor. Not all pracessor synchronization is done fron this pin.

TIA 3.58 MHz clock. Oscillator frea divide by 4. One MOS load.

6502 Phase 0 clock output. Drives processor at 1.19 or 1.79 MHz . One MOS load.

Delas line control voltase inpit * Low resistance-infut
RAMO- 10
ABO 11 I/O
thru
aモ:1 22
SEL32-23 0
RAM1- 240

UDD	25	PWR
TIA-	26	0
AB12	27	$I / 0$
thru		

DB7 thris DBO $3 甘$

R/W- 39 I*
RAM cinip select outpist. One MOS load.
Address infut (when 6502 is in control) or output (durins DMA). 150 pF, 2 lsttl loads.

6532 chip select output. One MOS load.
RAM chip select output. One MOS load $+50$

TIA chip select outfut. One MOS load
Address input (when 6502 is in control) or alstplyt (durins LMMA). $150 \mathrm{pF}, 2$ lsttl losds

Data input or output.
processor r/w- control input. 3-6K pullup resistor on pad to eliminate discretes on pc bd.

HALT-	40	0	Processor halt output. Orie MOS load.
RDY	41	0*	Ready outrut to 6502. Deen Irain with fullup resistor. One MOS load.
LUMO	42	0*	Least sisnificant video luminance outfut bit. Pan soes tri-state when Maria not eriabled.
COL	43	0*	Color output pin. Pad soes tri-state when Maria not enabled.
LUMS	44	0*	Video luminance outut pin. Pad soes low wher Maria not enabled.
LUM2	45	0*	Video luminance outut fin. Pad soes low when Maria not enabled.
BLANK	46	0*	Video blankins output fin. Pad soes tri-state when Maria not enabled.
LUM 1	47	0*	Video luminance outut pin. Pad soes low wher Maria rot enabled.
SYNC	48	0*	Video Sync output pin. Pad soes low when Maria not enabled.

* indicates that pad is unusual: see function description.

3.1 Microprocessor Operation

Microprocessor operations are used to set ur the control resister and pixel color values, which are used in subseauent DMA operations. In addition, a microprocessor read oferation is used to detect vertical blank for frame sunchronization.

Settins the DMn bits to the Test modes will cause ane entry into the DMA loor, followed by an Inactive state. This mode may not be used by a prosranmer, however, as this unusual entry into DMA does not assert the HALT pin to the 6502; it simply starts takins over the address bus without askins. causins bus contention.
3.2 Microprocessor Operation (continued)

Following is the 3600 -mode resister mar, specifyins the addresses which the Maria chip supports for accessins the color RAM and other resisters. The color RAM resisters are write-only to the 6502, althoush a semiconductor test prosran may read them. The only processer-readable bit in the system is the UBLANK bit of the statis resister.

Maria-mode Resister Maf

```
tw 6/16
```


Maria II Memory Mas

3.3 DMA Dreration

There are three major parts to DMA operation: nisplay List access, Display List List access, and Graphics/Map Data access. The levels of indirection in Maria DMA so as follows:

1. Microprocessor writes to Displaylist Pointer Pointer resister (DPPH/L) y which points to
2. Display List List, containins offset (zone size) and mode informationg as well 35 a new DP which points to
3. Display List, containins a variable number of headersy each of which has width, palette, and position information, as well as a PP (Pixel Pointer), which points to either of two things:
4. Graphics data which is loaded into the lineramp or
5. Character mar data, which forms the low bute cf the address of one or two butes of srafhics data, dependins on the state of the CWIDTH bit in the control resister.

Display List (List) DMA besins when the control resister is written to set it in the Run mode (rather than Inactive or either of the two test modes), after the DPP resisters have been initialized. It is safest to do this during UBLANK, so that the first DMA action to take place will betre Displaytist tist fetch. ip-nMA is turned on durins on-screen time, the next End-op-scaniine will start a Display List fetch, usins previous resister values.

The offset (zone size) value from the display list list neader ic bhtat th tho hidh hute of ofeh offective arashics ardross to provide vertical offsettins of sraphics. Each successive scanline of an object's sraphics will be stored on a sifferent 256 -byte pase of memory.

```
Maria II List orderins
```

Display List List format：
dpp：〈dli＞〈ai2en＞＜ailen＞＜0＞＜0pfset－－4 bits＞
$\langle d \boldsymbol{d}\rangle$
$\langle d p h\rangle$
－
－（headers refeated：enoush to fill screen）
Offset value（4 bits）represents（nti）scanlines to be displayed．Pist in a 15．to set 16．scanlines．Opfset resister value will decrement each scanline．〈al2en〉 and 〈allen＞control holy dma．If ari effective sraphics address has 312 or 311 set when their correspondins 〈alxeri＞is set，zero grafhics data will be used and sraphics fetchins will be aborted．If 〈dii＞is set，the NMI－ pin will be asserted for one cets cycle，one cycle after HALT－is released．

Displas List format：
short format：
$\langle p p 1\rangle$
$\langle W\rangle$
$\langle p p h\rangle$
\langle hpas \rangle
wioth field is non－zero
hpos＞
－
－（Headers repeat until End Block）
$\omega=\langle P P \bar{P}\rangle\langle W W W W W\rangle$
width field may not be all zeroes
lons Pormat：

$w 1=\langle\omega ⿴\rangle\langle 1\rangle\langle i n d\rangle\langle 00000\rangle$
$w m=$ new valte of woode bit prom now on
ind $=$ indirect mode for current header ONLY
$\omega=\langle P P P\rangle\langle W W W W W\rangle$
width field is not checked for all zeroes on S－byte headers．
end block：

$$
\left.\begin{array}{c}
\langle P P I\rangle \\
\langle 0
\end{array}\right\rangle
$$

Display lists and list lists must be in fast（RAM）memory． Character maps must be in fast memory．

Graphics may be in slow (ROM) memory. PPF represents "Palette" code used throushout object sraphics. WWWWW represents-nesative of width; 11111 is one-byte wide.

3.3 DMA Operation (continued)

In direct (not Indirect) mode, the address (pol and foh) in the list element points to the actual srafhic data to be stored into the line ram. The palette code will be stored alons with each pixel which is not transparent. Width refrrsents the number of bytes wide the object is.

The sraphics data read will be interpreted in one of two wass, depending on the value of the wm (write-made) flas. When wim $=0$, each bute specifies four pixel cells of the lineram, when wmin, each byte specifies two cells within the lineram. The final output video as read from the lineram will be interfreted accordins to the two rm (read-mode) bits in the control ressister. The followins tanle lists the possible combinations of control bits, and how the lineram outputs finally map into address bits for the color ram.

MODE	WM	RH1	RMO	CRA4	CRA3	CRA2	CRA1	CRAO
160(A)	0	0	x	P2	P1	Po	D7	116
							n5	D.4
							113	[12
							n 1	no
1503	:	0	x	$P 2$	n3	23	97	\underline{n}
					D1	DO	n5	D4

MODE	WH	RM 1	RMO	CRA4	CRA3	CRA2	CRA1	CRAO
--ー-	--	--	---	----	----	----	--ー-	
320 A	0	1	1	P2	P1	PO	D7	0
							D6	0
							DS	0
							114	0
							D3	. 0
							02	0
							D1	0
							Do	0
3208	1	1	0	P 2	0	0	D7	113
							D6	D2
							D5	D1
							114	D0
320 C	1	1	1	P2	D3	D2		0
							06	0
					D1	DO	15	0
							B4	
320 D	0	1	0	P2	0	0	D7	P1
							D6	PO
							15	P1
							114	Po
							D3	P1
							12	PO
							11	F1
							≥ 0	$?$

```
Pn represents the palette bits,
In represents the sraphics.data bits.
The topmost data in the table comes out pirst (is left-most on the
screen).
```

DMA Cycle Timins

```
Short Header
Lons Header
Grashics, per bute
Indirect map fetch
DMA Startur
DMA Shutdown, short
DMA Shutdown, lons
End-Of-UBlank DMA
```

```
8 cycles
```

8 cycles
10 cycles
10 cycles
3 cycles
3 cycles
3 cycles (plus one or two sraphics fetches)
3 cycles (plus one or two sraphics fetches)
5-12 cycles
5-12 cycles
13-17 cycles
13-17 cycles
19-23 cucles (list-list fetch)
19-23 cucles (list-list fetch)
7+ cyeles

```
7+ cyeles
```

DMA/Sync Timiris

End-Of-UBlank DMA is initiated on the trailins edse of UBlank. Resular DMA is initiated on the leadins edse of HBlank. DMA will be aborted (to shutdown) on the leadins edse of Border. (See screen definition for counter values associated with these times,)

When the I bit is set in byte one of a iist element, the address refers to a character mar, instead of the srafhic data itself. The value pound at each succesive location in the maf is coricateriated with the contents of the CharBase resister to form the address of a sinsle byte (4 pixels) of character data to be reas and stored in the line ram. The Width field specifies how many butes are fresent in the map before continuins on to the next list element. If the CWIDTH bit in the control resister is set, two consecutive srarinics bytes are fetched for each ciaracter map byte.

Scan lines of video data are double-buffered in the line rams; with one beins loaded while the other plays back. In order to make best : 15 ef this schemer dma circuitry loads the "recordins" buffer at hish speeds accordins to directions found in a display list. Line RAM operation is as follows:

* The horizontal position is specified by the pixel address to which the sraphic data is written into the line ram.
* Linile writins data to the line ram (with the KM bit of the control resister zerol if any siven pixel's color code is 00, that pixel's srafhics and palette data are not written into the line ram. This transparency code allows objects to overlap and contain windows. The $K M$ bit is set to 1 to defeat this transparency, for certain 320-wide modes.
* Prioritization of overlappins objects is achieved solely by the order in which the data is written to the line ram. The last object written will be on tor.
* Horizontal resolution may be 160 by 2 bits per fixel, 160 by 4 bits per pixel (with the caveat that only 13 colors may be addressed by this scheme; $x \times 00$ always accesses the backsrourid color), 320 by 1 (intended for text), or 320 b 2.
* Automatic burst-clear sets all cells of the most receritly Hisplayed -line ram buffer to zero after each scariline sorthat the prosrammer will not have to erase the old lirie imase before enterins a new one.
* Palette codes: Each pixel position, in addition to the 1 to 2 bits of srafinc data, contains a 3-bit palette code, specifyins nne of oisht oxiettes nf 3 nnlors, Tho milu rorinoetuat difference between palette information and the 2 bits of sraphic data is the speed with which it can chanse; a single falette is specified for the entire width of an object, while the sraphic data may chanse on a pi火el-by-pixel basis.

3.5 Color Mas RAM

The output of the line RAM is finally interereted into a five-bit address into a color mappins RAM orsanized as 25×8 bits. This RAM can be accessed at a 7 MHz rate (for 320 -mode outiut) and can be written to almost transparently durins on-screen time. This means that if the processor seizes the color RAM address selector to write in a new value, the previous outfilt of the RAM will be held until the processor is done. This has the effect of stretchins a lesitimate pixel color on the screen horizontally for that one cycle, rather than have a wholly unexfected color (the one beins written in) appear on the screen 35 silitch.

The color RAM decoder is arransed such that any access to an address of $X X X O O$ will select the same "backsrourid" resister in the RAM, hence the 25 bute addressins out of 5 bits, rather than 32 bytes.

The color RAM output is interpreted as four bits of lumirance and four bits of chrominance. The least sisnificant four bits are lump while the upper pour bits are color in a mappins arransemerit similar to the TIA.

3.6 Video Outpist

The video output of the Maria chip 15 intended to be a very close approximation to the NTSC television standard video. The luminance portion of the sisnal is senerated by a four-bit external resistor-ladder DAC. The chroma sub-carrier is a 3.58 MHz clock. which is controllably phase-delayed to any of 15 ansles with respect to the color burst sisnal which is output after each horizontal syric pulse. Also available are the options to turn off the sub-carrier for black and white video, and to turn off the sub-carrier for a black and white imase. The SYNC and BLANK outeut piris are also available for summins to make the video sisnal. The SYNC sisnal is the losical exclusive-or of USYNC and HSYNC.

4．0 Sentry Test Program
$4.1 \quad 1702 \mathrm{~B}$ chips shall be 100% tested to and perform digitally in accordance with the Sentry test vectors contained in Attachment A of this specification．
Production test sequences may be optimized by the supplier provided that digitial and parametric correlation to this referenced attachment is maintained and all changes are approved by the responsible Atari ASG director．
4．2 The order of Precedence shall be：1）This specification sections $1,2,3$ ，and 5；2）Test vectors attached in Attachment A．
5.1 Input/Output D.C. Specifications -- 1702B

Parameter (Level)	Sym	Min	Max	Units	Conditions
Input Voltage - Low	Vil	---	0.8	Volts	except RWF, pin 39
Input Voltage - Low	Vil	-1.2	0.0	Volts	RWF, pin 39 only
	Vib	2.0	--	Voits	except MEN, pin 5
Input Voltage - High Input Voltage - High	Vih	2.7	---	Volts	MEN, pin 5 only
Output voltage - Low	Vol	---	0.4	Volts	
Output Voltage - High	Voh	2.4		Volts	
Output Current - Low	Iol	---	-2.0	mA	
Output Current - High	Ioh	---	+100	uA	
Output Leakage - TS	Its	---	$+/-20$	uA	
Power Supply Current	Icc	---	200	mA	$25^{\circ} \mathrm{C}, \mathrm{Vdd}=5.25 \mathrm{v}$

5.2 Irput／Eutput Timirig SpuEifiEstions：

Refer to figure 1702B Timing for these rumbers：

DMA Timirig；Displu		＊＊		
ABcut from proz		80	nsec	$\mathrm{C}=150 \mathrm{FF}$
SS Gut from firs		100	ก5にい	$\mathrm{E}=25 \mathrm{FF}$
Diri Rerq＇g kuefore pits	15		ク，	
Dintrade time	0		「らロー	
Access time（ES）		165	n5EC	

DMA timing；Grapトiは 3Gににssæs：
ABCut from pha
nser

IS Gut from Friz
120
＊＊Note：DMA Timing internel to 1702B．Above timirg stown for refererige grily． SeG Page Ji of this sp戶Gificztion．
uF Interface timing：

1702B timing

ph2 rafers to internal haria sienal

Confidential
General Computer Compar;'
pellal rofers to 6502 phase 0 from Haria.

Grapnics Access (ROM or RAM)

```
System Timins Requiremants:
1. CLKIN (4 x 3.58 MHZ): 70 nSEC PERIOD
2. DEL VOLTAGE OFFSET:
RANGE: 0-5.0 V
RESOLUTION: +/-2 ns
```

Microprocessor Interface TIming

Note2: Data out held through PCtK2.

Clock strecch tining for TIA and 6532 access: 7 n divider snifts to by- 6 fron by-4 for pcik2 and following palkl time. In IIA node divider stays in by-6 mode.
pclko

6.0 Absolute specifications:	Mirı	Max	Unit	
Voltase (any ping referenced to USS)	-0.5	+7.0	Volts	**
Static Test (any ping 883 circisit)	500		Volts	
Storase Temperature (Ambierit)	-25	+125	Des C	
Operatins Temperature (Ambient)	0	70	Bes C	
Operatins Voltase (VDD)	4.75	5.25	Volts	

** Note: Voltage (pin 39, RWF only, referenced to VSS)
-1.2
+7.0 Volts

Timing sperifications (page 27) 3nd timing diagrams (page 28) use ph2 edges 35 a reference point for DMA timing. This signal is internal to the "Maria" device and cannot be accessed externally. Pclocko can be accessed externally and is similar to ph2 except that its edges are delayed from those of pin2.

The Sentry test program utilizes polocko as a reference point for DMA testing.

COLOR DELAY CIRCUIT

The color delay circuit provides a $3.58 \mathrm{Mr}=$ (oscillator input divided by 4) output with variable phase delay witr respect to the Color Burst output, a zero-delay reference burst on the colom pin during horizontal blank, When programmed for maximum delay (chroma field of color ram output $=15$), the output on the color pin shall be adjustable to a phase delay time of 260 nsec by varying the DEL input pin between 0.5 and 6.0 volts. When programmed for a chroma value of between 1 and 14 , the color output shall be delayed by incremental step values. When programmed for a chroma value of o (zero), the color oin output shall be DC.

